
Operating System(5th semester)

 Prepared by SANJIT KUMAR BARIK(ASST PROF ,CSE)

 MODULE-I

TEXT BOOK:

1. Operating System Concepts – Abraham Silberschatz, Peter Baer Galvin, Greg

Gagne, 8th edition, Wiley-India, 2009.

2. Mordern Operating Systems – Andrew S. Tanenbaum, 3rd Edition, PHI

3. Operating Systems: A Spiral Approach – Elmasri, Carrick, Levine, TMH Edition

 DISCLAIMER

“THIS DOCUMENT DOES NOT CLAIM ANY ORIGINALITY AND CANNOT BE USED AS A

SUBSTITUTE FOR PRESCRIBED TEXTBOOKS. THE INFORMATION PRESENTED HERE IS

MERELY A COLLECTION FROM DIFFERENT REFERENCE BOOKS AND INTERNET

CONTENTS. THE OWNERSHIP OF THE INFORMATION LIES WITH THE RESPECTIVE

AUTHORS OR INSTITUTIONS.”

S/W: Set of instructions or programs instructing a computer to do specific

task

S/w is often divided into three categories:

1. System S/W: It controls all H/W components of the system. It serves

as a base for application S/w. System s/w includes device drivers,

operating system (OS), compiler, disk formatters and utilities helping

the computers to operate more efficiently. It is also responsible for

maintaining H/w components. The system s/w is usually written in C

programming language.

2. Programming S/w (Utility programs): It is set of tools to aid developer

in writing programs. The various tools available are compiler, Linker,

debugger, interpreters and text editors.

3. Application S/w: It is intended to form certain tasks. A set of programs

written for satisfying a specific area of application is called application

S/w.

Ex: Ms Words, Gaming S/w, Database systems, Media player.

OPEARARING SYSTEM(OS):

It is the system software.

1. It acts as an intermediary between H/W and User

2. Resource Manager: Manage system resources in an unbiased

fashion both H/W and S/W

3. Provide a platform on which other application programs are installed.

4. OS is a program that manages the computer H/W

5. It also provides a basis for application programs and acts as an

intermediary between computer user and computer H/W

Abstract View of the System

Goals of Operating System

Primary Goal:

1. Convenience/User friendly

2ndary Goal:

1. Efficiency (Minimum input ---------Max output)

Compiler Assembler M.S.Office VLC NFS

 System and Application Programs

Operating System

Computer H/W

USER1 USER2 USERn

Resource like CPU,Memory,

I/O devices

………………………….

USER
OPERATING SYSTEM H/W

Functions of operating system:

1. process management

2. Memory management

3. .I/O device management

4. File management

5. Network Management

6. Security and Protection

Types of Operating system

1. Batch operating system

2. Time sharing operating system

3. Distributed operating system

4. Network operating system

5. Real time operating system

6. Multiprogramming /Multiprocessing /Multitasking OS

Evolution of Operating System

In staring, mainframe computers, it has following concept:

1. Common I/P and O/P devices were card readers and tape drivers

2. Users prepare a job which consist of the program, I/p data and

control information

3. I/p job is given in the form of punch cards and results also appear in

the form of punch card after processing.

4. So OS was very simple, always presents in the memory. Major task is

to translate the control from one job to another.

Program

I/P data

 Control

Instruction

 JOB
CPU

 +
OS

User program

Computer system

I/P JOB O/P

 Disadvantages ?

Batch processing:

1. Jobs with similar needs are batched together and executed through

the processor s as a group.

2. Operators sorts jobs as a deck of punch cards into batch with similar

needs

Ex: Fortran batch, COBOL batch.

User1->job1

User2->job2

…….

Usern> jobn

Advantages:

1. In a batch processing job excute one after another , saving time from

activities like loading compiler

2. During a batch execution no manual intervention is needed.

Disadvantages:

1. Memory limitation

2. Interaction of I/P and O/P devices directly with CPU.

3. CPU utilization is idle.

Operator

Job7

Job5

Job6

Batch1

Job4

Job14

Job3

Batch2

2

 CPU

 +

O/P
OS

User

program

I/P

COMPUTER

R

Spooling :(simultaneous peripheral operation online)

1. I/P and O/P devices are relatively slow compare to CPU (

digital)

2. In spooling , data is stored first onto disk and then CPU interact

with Disk(digital) via main memory

3. Spooling is capable of overlapping I/O operations of one job

with CPU operations of other jobs.

 VIEW of SPOOLING

Advantages:

1. No interaction of I/P and O/P device with CPU

2. CPU utilization is more as CPU is busy most of time.

Disadvantages:

1. Spooling was uniprogramming. (Non –primitive scheduling)

 I/P device

 +

 +

DISK

Main Memory

 CPU

Computer

 O/P device

Multiprogramming O/S

1. Maximize CPU utilization

2. Multiprogramming means more than one process in main memory

which is ready to execute.

3. Process generally requires CPU time and I/O time. So if running

process perform I/O or some other event which don’t require CPU

then instead of sitting idle,CPU make a context switch and picks

some other process and this idea will continue.

4. CPU never sits idle unless there is process ready to execute or at

time of context switch.

Advantage:

1. High CPU utilization

2. Less waiting time, response time etc.

3. May be extended to multiuser

4. Now-a-days, it is useful when load is more.

 CPU

OS

P1

P2

P3

P4

 M.M

 COMPUTER SYTEM

Disadvantages:

1. Difficulties in scheduling

2. Main memory management required

3. Memory fragmentation

4. Paging (Non-contiguous memory allocation)

Multitasking operating system/Time sharing /Faire

share/Multiprogramming with Round –Robin:

1. Multitasking is the multiprogramming with time sharing

2. Only one CPU but switches between process so quickly that it gives

on illusion all executing at same times.

3. The task in multitasking may refer to multiple thread of the same

program.

4. Main idea is better response time and executing multiple process

together.

WORD

E-MAIL

Browser

 OS

CPU

Multiprocessing Operating System

1. Two or more CPU within a single computer in close communication

sharing the system bus, memory and other I/O devices

2. Different process may run of different CPU, true parallel execution.

3. Systematic: One OS control all CPU, each CPU has equal rights.

4. Asymmetric :Master slave architecture .System task on one

processor and application on other as one CPU will handle all H/W

interrupt as I/O devices, they are easy to design but less efficient.

Advantage:

1. Increase throughput

2. Increase reliability

3. Cost saving

4. True parallel processing

5. Better efficiency

Disadvantages:

1. More Complex

2. Overhead as coupling reduce throughput

3. Large main memory

CPU1 CPU2 ……………………………….. CPUn

MEMORY

FUNCTION OF OPERATING SYSTEM

1. Initial Loading of program

2. Process management

3. Main memory management

4. File Management

5. I/O system Management

6. 2ndary storage management

7. Networking

8. Protection or Security

9. Command – Interpreter System

1. Initial Loading of program

IO.SYS : Control input output devices

MSDOS.SYS:Load MS- Dos

CONFIG.SYS : Configures the device drivers

COMMAND.COM: Load the command line interpreter

2. Process management

 A program does nothing unless their instruction are executed by a

CPU.A process is a program in execution. EX:

 A time shared user program is a process.

 A word processing program being run by an individual user on

PC is a process.

 A system task such as sending O/P to a printer is also a

process.

 A process needs certain resources including CPU time, Memory files

and I/O devices to accomplish its task.

 These resources are either given to process when it is created or

allocated to it while it is running.

 Batch job is also kind of process

 A system task such as spooling O/P to a printer also is a

process.

 OS is responsible for the following activities of process management:

 Creating and deleting both user and system process

 Suspending and resuming process

 Providing mechanism for process synchronization

 Providing mechanism for process communication

 Providing mechanism for deadlock handling

3. Main memory Management

Main memory is a large array of words or bytes ranging from

hundreds of thousands to billions. Main memory stores the quickly

accessible data shared by the CPU and I/O devices. The CPU

reads instruction from main memory during instruction fetch cycle

and it both reads/writes from main memory during data fetch cycle.

The main memory is generally the one large storage device that

the CPU is able to address and access directly.

 EX: for the CPU to process data from disk .Those data must be

transferred to main memory by CPU generated I/O calls. The

instruction must be in the memory for the CPU to execute them.

 OS is responsible for the following activities in connection with

main memory management:

 Keeping track of which parts of memory are currently

being used and by whom.

 Deciding which processes are to be loaded into memory

when memory space becomes available(in case

multiprogramming)

 Allocating and De-allocating memory space as needed.(

Recover memory space when process no longer needs it

or has been terminated)

4. File management:

Computer can store information on several different types of physical

media: magnetic tape, magnetic disk and optical disk. Each medium

is controlled by a device such as disk drive or tap drive those has

unique characteristics. These characteristics include access speed,

capacity,transfer rate and access method(:sequential or random).

 For convenient use of computer system, OS provides a uniform

logical view of information storage .The OS abstracts from the

physical properties of its storage devices to define logical storage unit

file. A file is collection of related information defined by its creator.

The OS is responsible for the following activities of file management:

 Creating and deleting files.

 Creating and deleting directories

 Supporting primitives for manipulating file and directories

 Mapping files into 2ndary storage.

 Backing up files on Non-volatile media(stable-storage media)

 Keep track of resources, its location, use, status etc. These

collective facilities are often called file system

5. I/O system management: (Device management

System)

One of the purposes of an OS is to hide the peculiarities of specific

H/W devices from the User.

Ex: In Unix the peculiarities of I/O devices are hidden from the bulk

of the OS itself by I/O subsystem.

The I/O subsystem consists of:

 A memory management component that includes buffering,

catching and spooling.

 A general device driver interfaces drivers for specific

hardware devices. Only the device driver knows the

peculiarities of specific device to which it is assigned.

6. Secondary storage management :

The main purpose of computer system is to execute programs.

These programs with the data they access must be in the main

memory during execution. As the main memory is too small to

accommodate all the data and programs,and also the data that it

holds are lost when power is lost, the computer system must

provide 2ndary storage device to back-up-main memory. Most

modern computer systems are disks as the storage medium to

store program and data. The O/S is responsible for the following

activities of disk management:-

 Free space management

 Storage allocation

 Disk scheduling (FCFS, SSTF,SCAN,LOOK C-SCAN,C-

LOOK)

7. Networking:

A distributed system is collection of processors that don’t share

memory, peripherals devices or a clock. Each processor has its

own local memory, clock and processors communicate with one

another through various communication lines such as a high

speed buses or networks.The processor in the system are

connected through communications networks which are

configured in a number of different ways. The communication

network design must consider message routing and connection

strategies: How to design a packet, what should be policies of

routing,how to route the packet.

8. Protection and security:

If a computer system has multiuser and allow the concurrent

execution of multiple processes, then the various processes must

be protected from one another’s activities. For that purpose ,

mechanism ensure that files, memory segment, CPU and other

resources can be operated on by only those processes that have

gained proper authorization from the O/S.

9. Command Interpretation:

One of the most important functions of the OS is connected

interpretation where it acts as the interface between the user and

OS.

 It provides better collection of command and command

interpreter to the user.

 So that user can interact with the O/S.

OPERATING SYSTEM SERVICES:

An operating system provides an environment for the execution of the

program. It provides some services to the program. The various services

provided by an operating system are as follows:

1. Program execution: The system must be able to load a program

into memory and to run that program. The program must be able

to terminate this execution either normally or abnormally.

2. I/O operation: A running program requires I/O. This I/O may

involve a file or I/O device for specific process. Some special

function can be desired. Therefore the O/S must provide to do

I/O operations.

3. File system manipulation: The program need to create and delete

files by name, read and write files. Therefore the O/S must

maintain each and every file correctly.

4. Communication: The communication is implemented via shared

memory or by the technique of message passing in which packets

of information are moved between the processes by the O/S.

5. Error Detection: The O/s should take the appropriate actions for

the occurrence of any type like arithmetic overflow, access to the

illegal memory location and too large user’s CPU time.

6. Resource Allocation: When multiple users are logged on to the

system, the resources must be allocated to each of them. For

correct distribution of resource among the various process, the

OS uses the CPU scheduling , which determines which process will

be allocated with resource

7. Accounting: The OS keep track of which users use ,how many, and

which kind of computer resources

8. Protection: The O/S is responsible for both H/W as well as S/W

protection. The O/S protects the information stored in multiuser

computer system

SYSTEM CALLS:

System calls provide the interface between a process & the OS.

These are usually available in the form of assembly language

instruction. Some systems allow system calls to be made directly

from a high level language program like C, BCPL and PERL etc.

systems calls occur in different ways depending on the computer

in use. System calls can be roughly grouped into 5 major

categories.

1. Process control
2. File manipulation
3. Device Management
4. Information Maintenance
5. Communication

 System calls provide an interface to the service made

available by an Operating system.

 System call is the programmatic way in which a computer

program requests a service from kernel of the operating

system.

 These calls are generally available as routines written in C

and C++.

*BCPL: Basic combined programming Language

*PERL: Practical Extraction and report language

User mode

Kernel

Mode

Privileged

mode

Application

 OS

 Kernel

 CPU, Memory, I/O

 H/W

Ex: of Systems call sequence for writing a simple program to read data from one file and copy them to

another file.

Source file
Destination File

Acquire Input file name

Write Prompt to Screen

Accept Input

Acquire Output filename

Write prompt to screen

Accept Input

Open Input File

If file doesn’t Exist, ABORT

Create Output file

If file Exists,ABORT

Read from Input File

Write to Output File

Close output File

Write Completion Message to

SCREEN

Terminate Normally

 Loop

 Until Read fails

Ex:2 The standard C library provides a portion of system call interface for many versions of UNIX and

LINUX. Let’s assume a C program invokes the printf() statement. The C library intercepts this call and

invokes the necessary system call(or calls) in the operating system-in this instance, the write() system

call. The C library takes the value returned by write () and passes it back to the user program

 Write()

1. Process Control:

 End, abort: A running program needs to be able to has its

execution either normally (end) or abnormally (abort).

 Load, execute: A process or job executing one program

may want to load and executes another program.

#include<stdio.h>

int main()

{

printf(“hello”);

Return 0;

}

 Standard C library

User Mode

Kernel Mode

Write()

System call

 Create Process, terminate process: There is a system call

specifying for the purpose of creating a new process or job

(create process or submit job). We may want to terminate a

job or process that we created (terminates process, if we

find that it is incorrect or no longer needed).

 Get process attributes, set process attributes: If we create

a new job or process we should able to control its

execution. This control requires the ability to determine &

reset the attributes of a job or processes (get process

attributes, set process attributes).

 Wait time: After creating new jobs or processes, we may

need to wait for them to finish their execution (wait time).

 Wait event: We may wait for a specific event to occur (wait

event).

Example of system call: fork(),exit(),kill(),nice()

 Allocate and free memory:

2. File Manipulation:

 Create file, delete file: We first need to be able to create &

delete files. Both the system calls require the name of the

file & some of its attributes.

 Open file, close file: Once the file is created, we need to

open it & use it. We close the file when we are no longer

using it.

 Read, write, reposition file: After opening, we may also

read, write or reposition the file (rewind or skip to the end

of the file).

 Get file attributes, set file attributes: For either files or

directories, we need to be able to determine the values of

various attributes & reset them if necessary. The system calls

get file attribute & set file attributes are required for their

purpose.

Example of system call: Create(),open(),close(),read(),write()

3. Device Management:

 Request device, release device: If there are multiple users

of the system, we first request the device. After we finished

with the device, we must release it.

 Read, write, reposition: Once the device has been requested

& allocated to us, we can read, write & reposition the

device.

 Get device attributes, set device attributes:

 Logically attach or detach devices:

4. Information maintenance:

 Get time or date, set time or date: Most systems have a

system call to return the current date & time or set the

current date & time.

 Get system data, set system data: Other system calls may

return information about the system like number of current

users, version number of OS, amount of free memory etc.

 Get process attributes, set process attributes: The OS keeps

information about all its processes & there are system calls

to access this information.

Example of system

call:gettime(),getdate(),settime(),getprocees(),set

process(),get system data(),set system data(),set file() and so

on.

5. Communication:

 create, delete communication connection

 Send, receive messages

 Transfer status information

 Attach or detach remote devices

There are two modes of communication such as:

 Message passing model: Information is exchanged

through an inter process communication facility

provided by operating system. Each computer in a

network has a name by which it is known. Similarly, each

process has a process name which is translated to an

equivalent identifier by which the OS can refer to it. The

get hostid and get processed systems calls to do this

translation. These identifiers are then passed to the

general purpose open & close calls provided by the file

system or to specific open connection system call. The

recipient process must give its permission for

communication to take place with an accept connection

call. The source of the communication known as client &

receiver known as server exchange messages by read

message & write message system calls. The close

connection call terminates the connection.

 Shared memory model: processes use map memory

system calls to access regions of memory owned by

other processes. They exchange information by reading

& writing data in the shared areas. The processes ensure

that they are not writing to the same location

simultaneously.

Process A

Process B

Kernel

M

M

M

1

2

Process A

Shared Memory

Process B

 Kernel

1

2

Shared Memory Message Passing

Operating system structure

1. Monolithic Systems (Simple structure)

2. Layered Structure

3. Microkernel systems

1. Monolithic Systems (Simple structure)

Monolithic operating system is one of the simple operating system

architecture and is in use from very early times. Earlier computer systems

were relatively simple having single CPU,a small size memory and few

input output devices. In order to manage these simple systems, monolithic

kernels were best suited. In monolithic kernel design all the components of

the operating system like process management, memory management,

device management, file management, etc are all integrated under a single

unit in the kernel address space. There is one code (program) consisting of

routines, subroutines and data is written and stored in memory. The

components of the operating system use this code and provide necessary

functionality. The various components of operating system can also

communicate with each others required in order to accomplish the given

task. OS/360,VMS and Linux are all examples of Monolithic operating

system.

USER1 User2 User-n USER MODE ……

….

Monolithic Kernel

 System Hardware

Kernel Mode

Advantages of monolithic Kernels:

 Monolithic kernels are quite fast. The code is accessible to all the

components of the operating system and this code can be executed

without much restriction making the overall system fast.

 Monolithic kernels provide direct communication between

components which makes the system more efficient to work

Disadvantages:

 Monolithic kernels are more prone to errors and bugs as user process

runs in same address spaces as that of kernel. Also maintaining the

code also becomes difficult.

 Harder to port because of dependency on code.

 Adding /removing any feature or functionality in monolithic system are

quite difficult and often require rewriting and recompiling the whole

code again.

2. Layered Structure

The first layer based operating system was proposed by E.W dijkstra and

his team. In layered approach the operating system consist of several

layers where each layer has a well defined functionality and each layer can

be designed, coded and tested independently. The layers are arranged in

increasing order of abstraction, means the lowest layer(0) interacts and

deals with the underlying hardware and topmost layer(N) provides an

interface to the application programs and user program(process).Each

layer relies on the service of the layers below it. The communication takes

place only between adjacent layers. For example: layer 3 can request a

service from layer 2 immediately below it and it can provide service only to

the layer 4 immediately above .Each layer knows what services are

provided by the layer above it but the details as how these services are

provided are hidden. The different layers can be file management layer,

memory management layer, communication management layer, User

program layer etc.

Example of layered operating system is THE operating system which

consists of 6 layers .Another example is MULTICS system.

Advantages of layered structure:

 In the layered approach it is easier to add any new features or make

changes in one layer without affecting the other layers of the

operating system.

 Any bug or problem in a particular layer is restricted to that layer only.

That layer can be debugged, corrected and redesigned without

affecting the functionality of other layers.

 Easy to add new layer as and when required.

USER PROCESS Application
Program

Utilities

API or SYTEM CALL INTERFACE

 USER MODE

System Mode

Layer N

Layer 2

Layer 1

Layer 0

..............................

Hardware

Process scheduling

File management

………………….

Disadvantages:

 The more the layers, the more is overhead incurred to maintain them.

 If the functionality is not properly divided among the layers, it might

be possible that one layer has too much functionality. If this happens

that layer may be overburden leading to overall low system

performance.

3. Microkernel systems:

Microkernel systems were designed to solve the problems faced by

monolithic kernels. Micro kernel architecture aims at keeping

minimum functionality within the kernels but at the same time

provided the abstraction for a complete operating system designing

and implementation. The basic functionalities like :

Process scheduling, inter-process communication, thread

management, low level space management and interrupt

management were included within the kernel address space only.

However other functionalities like memory management, file

management, I/O device management, Networking etc. were not

included within the kernel instead each of these functionalities are

implemented through separate server process. The server processes

reside outside the kernel in the user address space .Each server

process provides separate functionalities and occupies separate

memory space. The user process acts as client. Whenever user

process need do something ,it send request to required server

process and wait for reply. The micro kernel using inter process

communication (IPC) sends the user request to the specific server.

The server processes the request and sends back the output and

other details back to the user process that generated the request.

Example of Micro kernel operating system:

Windows NT,WindowsXp, Mach ,AIX,OS X, MINIX etc are OS

,based on micro kernel.

Advantages:

 It is easier to add new functionality or to modify existing

functionality in micro kernel system

 System is very reliable because fault in one server process do

not halt working of entire system. Other server process

continues to its work.

 Easily portable to different computer platforms.

 Minimum functionality within the kernel makes the kernel small

and easy to maintain.

Disadvantages:

 It has low execution rate as higher inter-process communication

and context switching involved.

Process 1 Process2 Process-n Server1 Server2 Server-n
…

..

……

.

MICRO KERNEL

SYSTEM HARDWARE

 INTER PROCESS COMMUNICATION(IPC)

User

space

Kernel

space

Process Management

Process: A process is basically a program in execution. The execution of a

process must progress in a sequential fashion.

 Ex: We write our computer program in C-editor and we execute this

program, it becomes a process which performs all the tasks mentioned in

the program.

Ex: # include<stdio.h>

int main()
{
char str[]=”Hello”;
printf(“%s”, str);
}

 A program in execution

 Present in the RAM

Difference between program and process:

Basic program Process

1. Basic Program is set

of instruction

When a program is

executed ,it is known as

process

gcc hello.c

Executable

(a.out)

Process
/a.out

Executes from

RAM
Stored on H/D

2. Nature Passive Active

3. Lifespan Longer Limited

4. Required

resources

Program is

stored on disk

in some file

and doesn’t

require any

other

resources

Process hold resources

such as

CPU,Memory,Address

,Disk,I/O etc

 Process can be divided into four sections:

1. Stack 2. Heap 3. Text 4. Data

1. Stack : The process stack contains the temporary data such as

method/Function parameters, return address and local variables.

2. Heap: This is dynamically allocated memory to a process during

its run time.

3. Text: It contains the executable code. It also contains current

activity represented by the value of program counter and

contents of processors registers

Stack

Heap

Data

Text

4. Data: This section contains the global and static variable

 Text sections are equivalent, the Data, Heap and Stack sections

vary for same program of different users

 Ex: #include<stdio.h>
 #include< stdlib.h>
 int calls;

void fact(int a,int *b)
{
calls++;
if(a==1) return;
*b=*b*a;;
fact(a-1,b);
}
int main()
{
int n,*m;
scanf(“%d”,&n);
m=malloc(sizeof(int);
*m=1;
fact(n,m)
printf(“%dfactorial=%d”,n,*m);
free(m);

 max size is fixed and decided by OS

Process Life Cycle (Process State)

When a process executes, it passes through different states. These stages may

differ in different operating systems and the names of these states are not

standardized.

Stack

Heap

Data(static &global)

Text

 MAP of a process

Max size

1. New: The process is being created.

2. Running: Instructions are being executed.

3. Waiting: The process is waiting for some event to occur (Ex: I/O completion

or reception of a signal)

4. Ready: The process is waiting to be assigned to a processor.

5. Terminated: The process has finished execution.

 As a process executes, it changes its state.

 The state of process is defined in part by the current activity of

that process.

 Diagram of process state

New

Ready Running

Terminated

Waiting

Interrupt Admitted

Scheduler

dispatch

exit

I/O or

event wait I/O or event

completion

Process Control Block(PCB) OR Task control Block (TCB):

A process control block is a data structure maintained by OS for every process.

The PCB is identified by an integer process ID (PID).It contains many pieces of

information associated with a specific process. These are:

1. Process state: The state may be New, Ready, Running, Waiting, Halted and

so on.

2. Process privileges: This is required to allow /disallow access to system

resources.

3. Program Counter: The counter indicates the address of the next instruction

to be executed for this process

4. Process ID: Unique identification for each of the process in the O/S

5. CPU register: Various CPU registers (AC,index registers,stack pointer ,GPR

registers) where process need to be stored for execution for running

state.Along with the program counter ,this state information must be saved

when an interrupt occurs, to allow the process to be continued correctly

afterward(refer figure 3.4)

6. CPU-scheduling information: information includes process priority and

other scheduling information which is required to schedule the process.

7. Memory –management information: this includes the information of page

table, memory limits, segment table depending on memory system used by

the O/S.

8. Accounting Information:This includes the amount of CPU and real time

used, time limits, account numbers, process ID and so on.

9. I/O status information: Information includes the list of I/O devices allocated

to process, a list of open files and so on.

 The PCB is maintained for a process throughout its life time and is deleted

once the process terminated

PCB Lay out

Process ID

State

Program counter

CPU registers

CPU –scheduling

Information

Memory-Management

Accounting information

I/O status information

 ………….

 PCB LAYOUT

Process scheduling

 The objective of multiprogramming is to have some process

running at all times, to maximize CPU utilization

 The objective of time sharing is to switch the CPU among

processes so frequently that users can interact with each program

while it is running.

 To meet these objectives the process scheduler selects an

available process (Possibly from set of several available process)

for program execution on the CPU.

 For a single –process system, there will never be more

than one running process.

 If there are more processes, the rest will have to wait

until the CPU is free and can be rescheduled.

Definition: The process scheduling is the activity of the process

manager that handles the removal of the running process from the CPU

and the selection of another process on the basis of a particular

strategy.

Scheduling Queues:

Job Queue: As process enters the system, they are put into job queue,

which consist of all processes in the system.

Ready Queue: The process that are residing in main memory and are

ready and waiting to execute are kept on a list called the ready queue.

Device queue (I/O waiting Queue):

The processes which are blocked due to unavailability of I/O device

constitute this queue.

The OS can use different policies to manage each queue (FIFO,R-R,

Priority and so on).The Os scheduler determines how to move

processes between the ready and run queues which can only have one

entry per processor core on the system(Explain in Below diagram).

Swap in Swap out

Job Queue

Partially executed swap-out

processes

Ready Queue

CPU

I/O I/O Waiting Queues

Schedulers:

A process migrates between the various scheduling queues throughout

its life time purposes. The OS must select for the scheduling processes

from these queues in some fashion. This selection process is carried out

by appropriate scheduler.

Definition: Schedulers are the special system S/W which handles

process scheduling in various ways. Their main task is to select the jobs

to be submitted into system and to decide which process to run.

Schedulers are of three types:

1. Long-Term schedulers

2. Short-Term schedulers.

3. Medium-term schedulers.

1. Long-Term schedulers(JOB schedulers)

Long term schedulers select process from disk (job-Queue) and

loads them into memory for execution. It controls the degree

of multiprogramming i.e no. of process in the memory. It

executes less frequently than other schedulers. If the degree of

multiprogramming is stable than average rate of process

creation is equal to average departure rate of processes leaving

the system. So ,the long term scheduler is needed to be

invoked only when a process leaves the system.

The primary goal (objective) of the job scheduler is to provide a

balanced mix of jobs, such as I/O bound and Process-Bound.

I/O bound: An I/O bound process spends in doing I/O operation

(Ex:C-programming)

CPU bound: It spends more times in doing computation than

I/O opearations (Ex: Complex sorting program)

2. Short-Term schedulers.(CPU Schedulers):

It selects among the process that are ready (ready queue) and

allocates the CPU to one of them. Short term schedulers is

known as dispatcher, make the decision of which process to

execute next. It selects a new process for the CPU quite

frequently. It execute at least one in 100ms.Due to the short

duration of time between executions, it is very fast.

3. Medium-term scheduler:

The main idea behind this scheduler is that sometimes it is

advantageous to remove process from memory and hence

reduce the degree of multiprogramming .At some later time,

the process can be reintroduced into memory and its execution

can be continued from where it had left off. This is called as

swapping .The process is swapped out and swapped in by

medium term scheduler.

Swapping is necessary to improve the process mix or due to

some changes in memory requirements, the available memory

limit is executed which requires some memory to be freed up.

(explain in above fig.)

Comparison among scheduler

 Long Term

scheduler

Short term

scheduler

Medium term

scheduler

1 It is a job-

scheduler

It is CPU scheduler It is process

swapping

scheduler

2 Speed is lesser

than short term

schduler

Speed is fastest

among other two

Speed is in

between both

short and long

term scheduler

3. It controls the

degree of

multiprogramming

It provides lesser

controls over

degree of

multiprogramming

It reduces the

degree of

multiprogramming

4 It is almost absent

or minimal in time

sharing

It is also minimal

in time sharing

system

It is the part of

time sharing

system

5 It selects process

from pool (job

queue) and loads

them into

memory for

execution

It selects those

processes which

are ready to

execute

It can re-introduce

the process into

memory and

execution can be

continued

Context switch:

A context switch is the mechanism to store and restore the state or context of

CPU in process control block (PCB) so that a process execution can be resumed

from the same point at a later time. Using this technique, a context switch

enables multiple processes to share a single CPU. Context switching is essential

part of multitasking operating features.

When the scheduler switches the CPU from executing one process to execute

another, the state from current running process is stored into the process control

block. After this ,the state for the process to run next is loaded from its own PCB

and used to set the PC,registers and so on. At that point, the 2nd process can start

executing.(refer fig.3.4)

Context switches are automatically intensive since register and memory state

must be saved and restored. To avoid the amount of context switching time,

some H/W systems employs two or more sets of processor registers when the

process is switched, the following information is stored for later use.

1.PC 2.sheduling information 3.base and limit registers use 4.currently used

register 5.changed state 6.I/O state information 7.Accounting information

CPU Scheduling

CPU scheduling is the process which allows one process to use the CPU while the

execution of another process is on hold (waiting state) due to unavailability of any

resource like I/O etc, thereby making full use of CPU. The aim of CPU scheduling is

to make the system efficient, fast and fair.

Whenever the CPU becomes idle, the operating system must select one of

processes in the ready queue to be executed .The selection process is carried out

by the short-term scheduler.(or CPU scheduler).

The scheduler selects from among the processes in the memory that are ready to

execute and allocates the CPU to one of them.

CPU scheduling deals with the problem of deciding which of the processes in the

ready queue is to be allowed first to CPU.

Dispatcher:

Another component involved in the CPU scheduling function is the Dispatcher.

The Dispatcher is the module that gives control of the CPU to the process selected

by the short –term scheduler .This function involves:

1. Switching context

2. Switching to user mode

3. Jumping to the proper location in the user program from where it left last

time.

The dispatcher should be as fast as possible, given that is invoked during

process switching. The time taken by the dispatcher to stop one process and

start another is known as the dispatch latency.

Scheduling can be two ways:

1. Non-preemptive Scheduling:

Under non-preemptive scheduling, once the CPU has been allocated to a

process, and then process keeps the CPU until it releases the CPU either by

terminating or by switching to the waiting state.

Ex: Microsoft 3.1 ,Apple Macintosh O/S

2. Preemptive scheduling:

Under this scheduling the process has to leave the CPU forcefully on the

basis of some criteria like running to ready and waiting to ready state

transaction.

Ex: At times to run a certain task that has a higher priority before another

task although it is running. Therefore the running task is interrupted for

some time and resumed later when the priority task has finished its

execution.

CPU scheduling decisions may take place under the following four

circumstances :->

1. When a process switches from the running state to the waiting state

(For I/O request or invocation of wait for the termination of one of the child

processes)

i.e. non primitive

 2. When a process switches from the running state to the ready state

 (Ex: when an interrupt occur i.e preemptive)

 3. When a process switches from the waiting to ready state (Ex: Completion of

I/O i.e preemptive)

 4. When a process terminates i.e. non –preemptive

In circumstances 1 and 4, there is no choice in terms of scheduling. A new

process (if one exists in the ready queue) must be selected for execution.

There is a choice, however in circumstances 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say the

scheduling scheme is non–preemptive; otherwise the scheduling scheme is

preemptive.

Scheduling Criteria:

There are many different criteria’s to check when considering the best

scheduling algorithm:

1. CPU utilization

We want to keep the CPU as busy as possible. CPU utilization may

range from 0 to 100%.In a real system, CPU usage should range from 40

%(Light –loaded) to 90 % (heavily loaded).

2. Throughput:

It is the total no. of processes completed per unit time. This may range

10/sec to 1/hour depending on the specific process.(length of process).

3. Turnaround Time:

It is the amount of time taken to execute a particular process i.e the

interval from time of submission of the process to the time of

completion of the process.

Turnaround Time (TAT) = finishing time-arrival time.

(Turnaround time is the sum of periods spend waiting to get

memory,waiting in the ready queue ,executing on the CPU and doing I/O

operation)

 TAT=Completion Time (C.T)- Arrival time(A.T)

4. Waiting Time:

Waiting time is the sum of periods spends waiting in the ready queue.

Waiting Time(WT)=starting time-arrival time

(The CPU scheduling algorithms doesn’t affect the amount the time

during which a process executes or does I/O operation, it affects only

the amount of time that a process spends waiting in ready queue)

Waiting Time=TAT-BT (Burst time)

Burst time/execution time/running time=It is the time, process require

for running on CPU

5. Response Time:

Amount of Time it takes from when a request was submitted until the

first response is produced.

It is the time, the first response and not the completion of process

execution.

Response Time(RT)=First response-Arrival Time.

 (i.e time between a process enters ready queue and get scheduled on

the CPU for the first time)

Optimization criteria:

1. Maximum CPU utilization

2. Maximum throughput

3. Minimum Turnaround Time

4. Minimum waiting Time

5. Minimum response time

CPU and I/O cycles:

Process execution consists of cycle of CPU execution and I/O

Wait. Process alternate between these two states

The success of CPU scheduling depends on the following

property of process:-

 Process execution of cycle of CPU execution and input output

wait.

 Process execution begins with CPU burst .That is followed by

an I/O burst then another CPU burst and so on.

 Process alternate between these two states.

 But the last CPU burst will end with a system request to

terminate execution, rather than with I/O burst.

(Alternating sequence of CPU and I/O burst)

Executing instruction

LOAD B

ADD B

Read a file

Waiting or some I/O

operation

Executing instruction

Store X

Written into file

Waiting for some I/O

operation

Executing instruction

 Waiting for I/O

operation

Send request to O/S to

terminate the Execution

CPU burst

I/O burst

CPU Burst

I/O burst

CPU Burst

I/O burst

CPU scheduling Algorithm:

1. First come first scheduling algorithm(FCFS)

2. Shortest Job first scheduling algorithm(SJF)

3. Priority scheduling algorithm

4. Round robin scheduling algorithm

5. Multilevel queue scheduling

6. Multilevel feedback queue scheduling

First come first scheduling algorithm(FCFS)

This simplest CPU scheduling algorithm.In this scheme, the process

which requests the CPU first, that is allocated to CPU first.

 The implementation of FCFS algorithm is managed with

FIFO queue.

 The average waiting time under FCFS policy is quite long.

 FCFS algorithm is non preemptive (means once CPU has

been allocated to a process then the process keeps the

CPU until the release the CPU either by terminating or

requesting I/O)

Problem:

Using FCFS Algorithm find the average waiting time and average

turnaround Time (TAT) if order is P1, P2, P3, and P4.

Process

P1

P2

P3

P4

CPU Time

 3

 5

 2

 4

Solution: Gantt chart will be:

 The waiting time for process P1=0, P2=3, P3=8, P4=10

So ,Avg waiting time =0+3+8+10=21/4=5.25ms

The Turnaround Time (TAT) = W.T+B.T

 TAT for process p1=0+3=3

 TAT for process p2=3+5=8

 TAT for process p3=8+2=10

 TAT for process p4=10+4=14

Problem2: Find the Average waiting time and Average TAT of the

following:

 Solution:

P1 P2 P3 P4

Staring time

Finish time

0 3 8 10 14

So, Average TAT=3+8+10+14=35/4=8.75 ms

Process Arrival Time CPU Burst

P1 0 16

P2 5 7

P3 10 14

P4 4 8

P5 7 12

P1 P4 P2 P5 P3

0 16 24 31 43 57

GANTT CHART

Process Arrival Time CPU Burst

P1 0 16

P2 5 7

P3 10 14

P4 4 8

P5 7 12

 A

Average TAT=?

Average Waiting Time (W.T)= ?

Advantage of FCFS:

 It is used in the batched systems

 It is easy to understand and implement programmatically, using a

queue data structure where new process enters through the tail

of the queue and scheduler selects process from the head of the

queue.

 Real life example of FCFS Scheduling is buying tickets at ticket

counter.

Disadavantages:

 It is non-preemptive algorithm, which means the process

priority doesn’t matter

If a process with very least priority is being executed (ex:

Daily routine back up) which takes more time and all of a

sudden some after high priority process arrives (Ex: interrupt

to avoid system crash), the high priority process will have to

Process Arrival Time (A.T) CPU Burst (B.T) Completion Time (C.T) Turn Around Time (TAT) Waiting Time (W.T)

P1 0 16 16 16 0

P2 5 7 31 26 19

P3 10 14 57 47 33

P4 4 8 24 20 12

P5 7 12 43 36 24

WT = T.A.T - B.T

TAT = C.T - A.T

wait and hence in this case, the system will crash just

because of improper process scheduling

 Not optimal average waiting time

 Resource utilization in parallel is not possible which leads to

convoy effect and hence poor resource (CPU,I/O etc)

utilization.

 Convoy effect:

Convoy effect is a situation where many process who need to use a

resource for short time and blocked by one process holding that

resource for a long time.

 This essentially leads to poor utilization of resource and poor

performance.

Ex: Problem on convoy effect:

A. B.

P.No A.T B.T

1 0 20

2 1 2

3 2 2

P.No A.T B.T

1 0 2

2 1 2

3 2 20

P1 P2 P3
P1 P2 P3

0 20 22 24
0 2 4 24

P.No C.T TAT W.T

P1 20 20 0

P2 22 21 19

P3 24 22 20

P.No C.T TAT W.T

P1 2 2 0

P2 4 3 1

P3 24 22 2

Avg W.T =0+19+20=39/3=13 ms Avg W.T=0+1+2=3/3=1 ms

 In FCFS, if the 1st process is having large burst time, then it will

have drastic effect on average waiting time of all process. This

effect is called convoy effect.

Q.: Find the Average waiting time and Average TAT of the following:

Q.

P.No A.T B.T

1 0 4

2 1 3

3 2 1

4 3 2

5 4 5

Find the avg time=? 3.8ms

and Avg. TAT=? 6.8

ms

Criteria= Arrival rate

Mode= FCFS Non-Preemptive

scheduling

P.No A.T B.T

1 6 4

2 2 5

3 3 3

4 1 1

5 4 2

6 5 6

 P4 P2 P3 p5 p6 p1

0 1 2 7 10 12 18 22

idle

P.No W.T B.T C.T T.A.T W.T

1 6 4 22 16 12

2 2 5 7 5 0

3 3 3 10 7 4

4 1 1 2 1 0

5 4 2 12 8 6

6 5 6 18 13 7

Gantt chart

Avg W.T=29/6=4.83 ms

 If the arrival time of the processes are same/matching then

schedule the process which has lowest process ID

Average waiting time= 6+0+1+6+0+4=17/6=2.83 ms

P.No A.T B.T

1 8 2

2 3 4

3 7 6

4 10 3

5 2 1

6 3 1

Idl p5 p2 p6 p3 p1 p4
Idle

 0 2 3 7 8 14 16 19

Gantt chart

P.No A.T B.T C.T T.A.T W.T

1 8 2 16 8 6

2 3 4 7 4 0

3 7 6 14 7 1

4 10 3 19 9 6

5 2 1 3 1 0

6 3 1 8 5 4

WT = T.A.T - B.T

TAT = C.T - A.T

2. Shortest job first scheduling algorithm

Shortest job first scheduling works on the process with shortest burst time

or duration first.

 This is the best approach to minimize waiting time.

 This is used in batch systems

 It is two types: Non- preemptive and preemptive

 To successfully implement it, the burst time /duration time of the

processes should be known to processor in advance, which is practically

not feasible all the time.

 This scheduling algorithm is optimal if all the job /processes are available

at the same time (either arrival time is ‘0’ for all or arrival time is same

for all)

Non-preemptive shortest job first

Consider the below processes available in the ready queue for

execution, with arrival time as ‘0’ for all and given burst times.

Process Burst Time

P1 21

P2 3

P3 6

P4 2

P4 P2 P3 p1

0 2 5 11 32

Gantt

chart

P.no B.T C.T T.A.T W.T

P1 21 32 43 11

P2 3 5 5 2

P3 6 11 11 5

P4 2 02 2 0

Avg.waiting time = (11+2+5+0)/4=18/4=4.5 ms

For FCFS avg W.T= 18.75 ms

Problem with Non-preemptive SJF

If the arrival time for processes are different, which means all the processes are

not available in the ready queue at time ‘0’ and some jobs arrive after some time,

in such situation, sometimes process with the short burst time have to wait for

the current process’s execution to finish, because in non-preemptive SJF

scheduling, on arrival of a process with short duration, the existing job/process‘s

execution is not halted /stopped to execute the short job first.

 This leads to the problem of starvation where a shorter process has to wait

for a long time until the current longer process gets executed .This happen

if shorter jobs keep coming, but this can be solved using the concept of

aging. Aging is used to gradually increase the priority of a task, based

on its waiting time in the ready queue.

Q.1 Find the avg waiting time and TAT as per following using SJF Non-

preemptive

Solution: Criteria: short Burst time and Non preemptive

Gantt chart:

P.No A.T B.T

1 1 7

2 2 5

3 3 1

4 4 2

5 5 8

 P1 P3 P4 p2 p5 Idle

0 1 8 9 11 16 24

P.No A.T B.T C.T T.A.T W.T

1 1 7 8 7 0

2 2 5 16 14 9

3 3 1 9 6 5

4 4 2 11 7 5

5 5 8 24 19 11

T.A.T= C.T-A.T=8-1=7 and so on Avg W.T=(0+9+5+5+11)/5=30/5=6ms

W.T=T.A.T- B.T=7-7=0 and so on Avg TAT=(7+14+6+7+19)/5=10.6 ms

Q2. If the bust times of the process are same /matching then schedule the

process which has lowest arrival time

Using Non-preemptive SJF find avg W.T. ?

Solution:

Q. find out the avg waiting time and avg turn around time of the following process

(using SJF non preemptive algorithm)

P.No A.T B.T

1 6 1

2 3 3

3 4 6

4 1 5

5 2 2

6 5 1

 P4 p6 p1 p5 p2 p3 Idle Gantt chart

P.No A.T B.T C.T T.AT W.T
1 6 1 8 2 1
2 3 3 13 10 7
3 4 6 19 15 9
4 1 5 6 5 0
5 2 2 10 8 6
6 5 1 7 2 1

0 1 6 7 8 10 13 19

Avg WT= (1+7+9+6+1+0)/6=24/6=4ms

Avg TAT=(2+10+15+5+5+8+2)/6=42/6=7ms

Process A.T B.T
P1 0 8
P2 1 4
P3 2 9
P4 3 5

Avg W.T= 7.75 ms

Preemptive shortest job first

In preemptive shortest job–first scheduling , jobs are put into ready queue as they

arrive, but as a process with short burst time arrives ,the existing process is

preempted or removed from execution and shorter job is executed first.

Preemptive SJF is also called SRTF (shortest remaining time first)

Q1. Find out Avg WT of following (using SJF preemptive)

Solution: step1

 Step3-

Step2

Step4.

 Step-5

P.No A.T B.T

1 0 9

2 1 4

3 2 1

P.No A.T B.T

1 0 9

2 1 4

3 2 1

8

P1

0 1

P.No A.T B.T

1 0 9

2 1 4

3 2 1

8

3

P1 P2 p3

0 1 2 3

P.No A.T B.T

1 0 9

2 1 4

3 2 1 x

P1 P2 p3 p2

0 1 2 3 6

8

3

x

x

P.No A.T B.T

1 0 9

2 1 4

3 2 1

8

3

x

x

P1 P2 p3 p2 p1

0 1 2 3 6 14

P.No A.T B.T C.T TAT WT

1 0 9 14 14 5

2 1 4 6 5 1

3 2 1 3 1 0

Avg w.t= (5+1+0)/3=3 ms

x

Gantt chart

Q2. Find the average waiting time as per following (Using SJF preemptive)

 Solution:

P.No AT BT

1 0 9

2 1 4

3 2 9

P.No AT BT

1 0 9

2 1 4

3 2 9

8

3 X

P1 P2 P2 P1 P3

0 1 2 5 13 22

Gantt chart

P.No AT BT CT TAT WT

1 0 9 13 13 4

2 1 4 5 4 0

3 2 9 22 20 11

Average WT=(4+0+11)/3=15/3=5ms

Average TAT=(13+4+20)/3=37/3=12.3ms

X

X

Priority scheduling Algorithm

In this scheduling a priority is associated with each process and the CPU is

allocated to process with highest priority.

 Equal priority process are scheduled in FCFS manner

 Process with highest priority is executed first and so on.

 Priority scheduling may be Non-preemptive or preemptive scheduling

Q.1

Solution:

P.No A.T B.T priority

1 0 4 4

2 1 5 5

3 2 1 7

4 3 2 2

5 4 3 1

6 5 6 6

High

Low

Criteria=priority

Mode=Non-preemptive

P1 p3 P6 p2 p4 p5

 0 4 5 11 16 18 21

P.No A.T B.T priority C.T TAT WT

1 0 4 4 4 4 0

2 1 5 5 16 15 10

3 2 1 7 5 3 2

4 3 2 2 18 15 13

5 4 3 1 21 17 14

6 5 6 6 11 6 0

Avg W.Tt= 6.5 ms

Gantt chart

Q2. Priority based: preemptive:

Q3. Find the Avg waiting time of following using preemptive priority based

scheduling

Disadvantages:

A major problem with priority scheduling algorithm is indefinite blocking or

starvation

Priority P.No A.T B.T C.T

4 1 1 4 18

5 2 2 2 14

7 3 2 3 10

8 4 3 5 08

5 5 3 1 15

6 6 4 2 12

 P1 p3 p4 p3 p6 p2 p5 p1 idle

0 1 2 3 8 10 12 14 15 18

Avg wt time= 13+10+50+11+6=45/6=7.5 ms

Priority P.no A.T B.T

5 1 1 4

2 2 2 5

6 3 3 6

4 4 0 1

7 5 4 2

8 6 5 3

P4 p1 p1 p3 p5 p6 p5 p3 p1 p2

 0 1 2 3 4 5 8 9 14 16 21

 Avg W.T=?

3

2

High

Low

Round Robin Scheduling:

 A fixed time is allotted to each process,called quantum or time slice for

execution.

 Once a process is executed for given time period that process is preempted

and other process executes for a given time period.

 This type of algorithm is designed only for the time sharing system

 It is similar to FCFS scheduling with preemption condition to switch

between process.

 Context switching is used to save states of preempted process.

 It is always preempted

Disadvantages:

 The average waiting time under the round robin policy is quite long

Flowchart of R-R scheduling Algorithm

 Select the process

 Yes

 No

 No yes

Ready state

B.T <

T.Q

Execute the

Process B.T

Execute process for T.Q

Process

completion

Process

termination

Process

completed

execution

T.Q expires

 P1 p2 p3
T.Q=2

3 2 1 (B.T)

Q1. Find out the Average waiting time of following using R-R scheduling (given

TQ=2)

 Solution:

P.no A.T B.T

1 0 4

2 1 5

3 2 2

4 3 1

5 4 6

6 5 3

P1 P2 P3 P1 P4 P5 P2 P6 p5 p2 p6 p5

Ready queue

P1 P2 P3 P1 P4 P5 P2 P6 p5 p2 p6 p5

 0 2 4 6 8 9 11 13 15 17 18 19 21

P.no A.T B.T C.T TAT WT

1 0 4 08 0 8 04

2 1 5 18 17 12

3 2 2 06 04 02

4 3 1 09 06 05

5 4 6 21 17 11

6 5 3 19 14 11

Avg waiting time= 45/6=7.5ms

Avg TAT=66/6=11ms

Step 1:

step2

 step3.

P.no A.T B.T

1 0 4

2 1 5

3 2 2

4 3 1

5 4 6

6 5 3

P1

P1 p2 p3 p1

Ready queue

Gantt chart

0 2

2

P1 p2 p3 p1 p4 p5 p2

Ready queue

P1 p2 Gantt chart

0 2 4

3

P1 p2 p3 p1 p4 p5 p2 p6

Ready queue

P1 p2 p3

0 2 4 6 8

Gantt chart

P1 p2 p3 p1 p4 p5 p2 p6

P1 p2 p3 p1

Step 4

P1 p2 p3 p1 p4 p5 p2 p6

P1 p2 p3 p1 p4

0 2 4 6 8 9

Step 5

P1 p2 p3 p1 p4 p5 p2 p6 p5

P1 p2 p3 p1 p4 p5

0 2 4 6 8 9 11

Step6

4

P1 p2 p3 p1 p4 p5 p2 p6 p5p2

P1 p2 p3 p1 p4 p5 p2

0 2 4 6 8 9 11 13

1

Step7

P1 p2 p3 p1 p4 p5 p2 p6 p5p2 p6

P1 p2 p3 p1 p4 p5 p2 p6

0 2 4 6 8 9 11 13 15

1

Step-8

P1 p2 p3 p1 p4 p5 p2 p6 p5p2 p6 p5

P1 p2 p3 p1 p4 p5 p2 p6 p5

0 2 4 6 8 9 11 13 15 17

Step9

2

P1 p2 p3 p1 p4 p5 p2 p6 p5p2 p6 p5

P1 p2 p3 p1 p4 p5 p2 p6 p5 p2 p6 p5

0 2 4 6 8 9 11 13 15 17 18 19 21

Step-10

0 2 4 6

Objectives of R-R scheduling:

 If the time quantum is less , then the number context switches will

increase and response time will be less

 If the quantum time is large , then number of context switches will

decrease and response time will be more

 If the time quantum is very-very large , then this algorithm generates as

FCFS algorithm

 Round robin is used to decrease the response time.

EX:

Q. Consider a system which has ‘n ‘process sharing the CPU in round robin

Fashion. The context switching time is ‘s’ units. Then what must be the time

quantum ‘q’ such that each process is guaranteed to get its turn at the CPU for

every ‘t’ seconds of time.

P1 P2 P3 P4 P1

0 2 4 6 8 10

C.S

T.Q CS
 response decrease

T.Q CS
 Response increase

T.Q FCFS

a)q=(t-ns)/n+1 b) q=(t +ns)/n-1 c) q=(t-ns)/n-1 d)q=(t-ns)/n+1

Multilevel Queue Scheduling

In multilevel queue scheduling instead of maintaining single ready queue,

separate queues are maintained one for each different type of processes.

The different type of processes can be system process (High priority),

interactive processes (medium priority) and batch spawned processes

(lowest priority).Each queue will have different scheduling policy .Mostly

system process and interactive process uses round robin scheduling, while

batch job use the FCFS scheduling.

There are two ways to service processes in the queue. They two ways are.

1. The processes in the highest priority queue are serviced first by CPU

(according to their scheduling algorithm).When highest priority queue

becomes empty; CPU switches to medium priority queue and service

all the processes. When medium priority queue is empty, CPU finally

switches to the lowest priority queue and services all the processes

till that queue becomes empty.

One problem in this approach is that processes in the low priority

queue can be serviced until the queue above it with higher priority

becomes empty. This can result in starvation for the processes in the

lower priority queues.

Medium Priority Queue

Low- Priority Queue

High Priority queue System process

Interactive process

Batch spawned process

R-R scheduling

R-R scheduling

FCFS scheduling

CPU

Queues are assigned CPU based on the
priority. Process in high priority queue are
serviced first by CPU, then process in
medium priority queue and finally process
in the lowest priority queue
 OR
Alternatively each queue is allocated
certain amount of CPU time

2. Alternatively , each queue can be allocated certain amount of the

CPU time, the queues can then divide and schedule this allocated

CPU time among processes in that queue . The highest priority

queue could be allocated 80% of the CPU time, while the lowest

priority queue allocated 20 %.

Multilevel Feedback Queue Scheduling:

In a multilevel queue scheduling algorithm the process based on their type

are assigned to a specific queue. The processes of one queue are not

allowed to move into another queue. Multilevel feedback queue scheduling

gives flexibility and allows a process to move from one queue to another.

This movement of process depends on its run-time behavior or we can say

CPU burst of the process.

In a multilevel queue scheduling algorithm, queues are arranged according

their priority, with highest priority queue at top. Each queue is assigned

some percentage of CPU time (or time slice).The processes within the

queue are processed in FIFO manner. When a new process enters the

system, it is inserted at the tail (end) of the top level queue. After some time

the process reaches the head of the queue and assigned the CPU. If the

process gets completed within the given time-slice of the queue to which it

belongs, the process exits the system. If the process is not completed the

within the given time- slice of the queue to which belongs, then the process

is moved to the tail of lower priority queue. The same process follows in

this queue also and if the process is still not completed within the given

time –slice of the queue to which it belongs, it is moved to the tail of yet

another lower priority queue. In MFQS, a process is given one chance to

complete at a given queue level otherwise it is moved down to a lower

priority queue.

If a process has a long CPU burst not to be completed within time slice, it is

moved to lower priority queue. This approach leaves I/O bound and

interactive processes in the higher priority queues. Also, a process that

waits too long in a lower priority queue may be moved to a higher priority

Queue .This aging technique prevents lower priority processes from being

starved for CPU time

Process N …… process2 process1

Process N …… process2 process1

Process N ….. process2 process1

Queue allocated CPU for given

time slice (quantum)

Queue allocated CPU for given

time slice (quantum)

Queue allocated CPU for given time

slice (quantum)

Process

allocated

Process

allocated

Process

allocated

CPU one

by one

CPU one

by one

CPU one

by one

Head of the queue

(process are

dispatched here)

Tail of the queue

(New process are

inserted here

Queue priority 0
Highest queue
maintained FIFO
Manner

Queue priority1
Maintained FIFO
Manner

Queue priority2
Lowest queue
maintained FIFO
Manner

Process that does not get completed within the given

time slice of the queue to which it belongs is moved to

the tail of lower priority queue

Process that wait too long in a lower priority queue may

be moved to the higher priority queue

Scheduling parameters used in MFQS

In general some parameters are kept in mind while designing a multilevel

feedback queue scheduler. These are:

 How many levels of queues are there?

 What scheduling algorithm is to be followed in queues at different levels

 When to move a process to higher priority queue

 When to move a process to a lower priority queue

 To determine which queue a process will be inserted when that process

needs service(each time it returns to the ready state)

Q. Consider a system which has CPU bound process which requires Burst

time of 40 time units. Multilevel feedback queue scheduling is used .The

time quantum is 2 units and it will be incremented by 5 units in each level.

How many times the process will be interrupted and in which queue,

process will complete execution?

a)4,5 b)5,6 c)3,4 d)5,5

Time quantum=2

Time quantum=7

Time quantum=12

Time quantum=17

Time quantum=22

Level 1

Level 2

Level 3

Level

4

Level 5

Cumulative Time Remaining Burst time in each queue

2 38

9 31

21 19

38 02

40 0

1INT

2INT

3INT

4INT

Execution Completed

Shared –memory system:

The co-operating process can be well understood with help of producer-consumer

problem also known as bounded-buffer problem by shared –memory systems

	TEXT BOOK:
	SYSTEM CALLS:
	1. Process Control:
	2. File Manipulation:
	3. Device Management:
	4. Information maintenance:

